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The usual approximate method of treating the flow around a body in classical gas dynam- 
ics is based on the thin-body approximation where the relative thickness 5 of the body is 
small [1-6]. Steady supersonic flow of a relaxing gas around thin bodies was considered 
in [7, 8], where the flow unperturbed by the body was assumed to be in equilibrium and where 
the flow parameters were constants~ The presence of a thin body in the flow then leads to 
a slight departure from equilibrium, which can be treated as a small perturbation from the 
equilibrium state. 

In the present paper we consider thin plane bodies and thin bodies of revolution in 
the steady supersonic flow of a vibrationally excited gas which relaxes to the equilibrium 
state downstream of the body. The energy produced when the vibrationally excited molecules 
relax brakes the supersonic flow and this can lead to "thermal crises" (a breakdown of 
the steady flow state) [9]. A "thermal crisis" can be avoided by limiting the initial rela- 
tive departure from equilibrium. Hence in addition to ~ there exists another small param- 
eter in the problem: the relative departure from equilibrium g. The solution of the prob- 
lem is represented as an asymptotic expansion in the two small parameters. 

i. The plane or axisymmetric flow of a vibrationally relaxing gas will be described 
by the system of equations 

(pU)x -~- (pv)v + ~pv /g  = O, p ( u u x  + vuv) + p .  = O, 

p(uv~ + vvy) + p~ = O, 

upx  + vpv - -  a~(upx + vpy) ---- - -p ( ?  - -  l)(uekx + vekv),  

uehx + vekv = o(e*h - -  ek) ,  

(1.1) 

where x and y are the spatial coordinates; v = 0 and i for plane and axisymmetric flow, re- 
spectively; p, p, and a are the density, pressure, and frozen speed of sound; u and v are 
the components of the gas velocity along the x and y axes; y is the adiabatic index; ~ is 
the reciprocal of the relaxation time of the vibrational degrees of freedom; e k and ek* are 
the energy of the vibrational degrees of freedom and its equilibrium value; the subscripts 
x and y denote differentiation with respect to the corresponding coordinate. 

We assume the following relations for ek* and w [i0] 

o = k i p  exp ( - -  k2T-113) ,  eh = Oh B/(exp (Oh/T) - -  t). 

Here T is the transitional temperature; O k is the vibrational temperature; R is the gas con- 
stant; k~ and k 2 are positive constants dependent on the properties of the gas. Numerical 
values of the k i are given in [i0]. 

We assume that the unperturbed gas flow far from the body is one-dimensional steady 
supersonic flow along the x axis with velocity u0, density P0, and pressure P0 at x = 0. 
We assume that the axis of the body coincides with the x axis and that the nose of the body 
is at x = 0. We transform to dimensionless quantities in (i.i) by putting 

P = PoP, u = UoU, v ~- UoV , p = ?POP, 

2- * ~ ~- = L y  ek = a o e k ,  eh = a~e~, (o - -  Euo / L ,  x L x ,  y 
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(L is the length scale of the thin body). We assume that the length of the body is finite 

with the end of the body at x = i. 

At x = 0 the gas is assumed to have a given departure from equilibrium ek0 - ek0* > O. 
This quantity varies with position because heat is produced from the relaxation of the vibra- 
tional degrees of freedom toward the_equilibrium state. The parameters of the unperturbed 
flow are determined as functions of x by solving a system of equations obtained from (i.i) 

by putting 

7=0. ~ ~ = ~ = ~ = ~ = o ,  

which corresponds to the assumption that the unperturbed gas flow is one-dimensional flow 
along the x axis. Then (a zero superscript denotes the unperturbed flow) 

: + _ vM )" 
(]_.2) 

For supersonic (M0 2 > i) flow of a vibrationally excited (ek ~ ~ ek *~ gas relaxing to 
equilibrium downstream, it follows from (1.2) that with increasing x the velocity u ~ drops 

from 1 to the value Umi n corresponding to the root of the right-hand side of (1.2). The 

quantities ~0 and ~0 increase from i/y and i, respectively, to their maximum values corre- 

sponding to 60 given by (1.2). The change in the parameters of the unperturbed flow is ac- 

companied by a decrease in the Mach number M ~ which depends on ~0. Let u* be the value of 
u ~ at which M ~ = i. We have 

~S~ ~ (v + ~) M~V - i - v~, (1.3) 
M ~ - -  t = ] = 

~ 0  2 2-0  , t 
? M  o -- ?Mou ~- 

and therefore M ~ = 1 when M02(y + l)u ~ - 1 - 7M0 2 = O. But then it follows from (1.2) that 
Ux ~ = ~ and the steady solution does not exist. This phenomenon is known as a "thermal 

crisis" [9]. The value ~0 = ~, corresponding to thermal crises is found from (1.3): 

y , =  1 +VM~ (1.4) 
(v+ I)M~" 

The value of u* given by (1.4) varies from unity at M 0 = 1 to 7/(~ + i) z 0.58 (7 = 1.4) 
when M 0 + ~. Therefore to avoid a "thermal crisis" the change in the dimensionless velocity 

must satisSy the inequality 0.58 ! u* < ~0 ! 1 over the entire flow field and hence the rel- 
ative change in the parameters of steady supersonic one-dimensional flow of a vibrationally 
excited gas is small. Since these changes are determined by the energy released upon relax- 
ation, i.e., by the initial (at x = O) departure from equilibrium ek0* - ek0, it is natural 
to introduce the relative initial departure from equilibrium as a small parameter: 

7~0 - 7;o 
= >0 (1.5) 

exp (O /r o ) (VM  -- i) + -- -- ,) 

(the denominator is written in a form convenient for further analysis). 

We look for a solution in the form of asymptotic expansions in ~ and 6 (5 is the usual 
small parameter in the thin-body theory and is of the order of the ratio of the thickness 
of the body to its length L): 

u = i -F cut0 q- 5u01 + e2u20 -~ e6u11 -~ .... (1.6) 

= I -- eP10 + 6P01 -- e2P2o -- e6pn -F .... 

p = I/? -- eP10 + @01 -- ~2p20 -- e@n + .... 
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v = 6Vo~ - -  e 6 v ~  + . . . .  

e ~  = eao  q- eeh~o q- 5ehol -t- e~eh2o q- 85ehll -~ ... 

We note that the omitted terms are in general nonregular (for an example in ordinary gas 

dynamics see [i]). 

We next consider the problem of finding the coefficients of the expansions in (1.6). 
For the quantities of order e we have the relations 

- -  ( '~  (~' - -  t ) eho  e x p  (0/~/1"o)(~Mo 2 - -  1)  
~ .  = o x ~ ( - ~ 5 - ~ ,  .=o,o k + ~ .  

The ratio L/~ represents the typical relaxation length of the problem. 
of order e 2 we have 

( 1 . 7 )  

For the quantities 

U20 

U2o = Pzo q-  ulo = P2oJ Mo = (7 - -  - -  t - ' ~  Ulo t :v~ o - -  t ), 

= - -  (E~ -1- 2Eo.) x e x p  ( - -  ~ )  q- t - -  exp ( -  aT) ( E l  -~- E ,  (1 -r exp  ( - -  crx))). 
O" 

Here 

M~ k ~  1)); 

[ ~- (  + -*~ ~ E ~ =  M~,7-t---~-o) o - - t  ~2(? t ) e ~ , o e x p - ~ -  ~ 

Or 9t~ 

It will be convenient to introduce a new unknown function ~ such that 

| -v 

ro~ = M~z~ ,  ~o, - ( ~ -  ~) t - -  M~)%~ t- ~ ( % y  )~ �9 

The equation for r can be written in the form 

_ _ O k 

(Me ~ - ~ ) . ~  + O~o (Me ~ - ~ + v ( ~ , -  ~) (~Mo ~ -  ~)~;; ~.~p ~ q ) % ~ -  
x 

~o o I q-  ~ ? ( ? - -  t ) e ~ o e x p - -  ~ -  " - -  0 �9 

As usual in gas dynamics, here it is convenient to transform to the new independent 

variables E and ~, where E = x - ~02 - ly, E = r - ly. The equation for r takes the 
form 

(1.s)  

where 

A = ~ o ( ? - - i , v ~ n o e k o e x p - ~ o  , B = - - o )  o t - ] - ? ( y - - l ) e k o e x P  ( M ~ - - t ) .  
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Equation (1.8) can be solved using the Laplace transform with respect to g [7, Ii]. Ac- 
cording to the usual rules of the Laplace transform [12] we have 

qo(~, ~)-+ a)(s, ~), %(~, ~)-+ ~ ( s ,  ; ) -  ~(o,  4), 

% ~ ( ~ ,  ~) -+ s2OO(s, ~) - sr ~) - ~ ( o ,  ~). 

We assume homogeneous initial conditions 

�9 (o, ~) = %(o, ~) = o. (1_.9) 

These conditions do not imply that perturbations in the approximation considered here are 
zero along the first characteristic going out from the nose of the body. Indeed 

Uol(0, ~), po~(0, ~ ) ~  cI)~t(0, ~), a rot(0, 4)"~ cDr ~ ) -  

- %~(o, 4). 

In place of (1.8) we have 

\ (l. J0) 

Hence the problem has been reduced to the ordinary differential equation (i.i0). 

2. For a plane body we have v = 0 in (I.i0). Then 

,-(Mo - , ) ,  

The general solution of (2.1) is 

where 

= C~(s) exp (s ~ C2(s) exp (La~), 

( 2 . 1 )  

We expand A I and 12 in power series in i/s 

4As" ) 
~s~- B- - (M~--  l ) s  " 

( ) ( A ) 
h = s  1 +  2(M~,--t)s  + O ( t l s D ,  ~_=s 2(M~_t)+O(tls2). 

We introduce the notation 

A 
A - - 2 ( M ~ - - I ) '  ( 2 . 2 )  

which  i s  c o n v e n i e n t  f o r  f u r t h e r  c a l c u l a t i o n .  Then t l  = s + A, t 2 = -A.  

The s o l u t i o n  o f  i n t e r e s t  h e r e  mus t  be bounded as  ~ ~ ~,  t h e r e f o r e  C l ( s )  = 0 ( t h e  p a r t  
o f  t h e  s o l u t i o n  i n v o l v i n g  C l ( s )  c o r r e s p o n d s  t o  p e r t u r b a t i o n s  a r r i v i n g  a t  t h e  s u r f a c e  o f  t h e  
body f rom i n f i n i t y  and we assume t h a t  t h e r e  a r e  no p e r t u r b a t i o n s  o f  t h i s  k i n d ) .  Then 

= C2(s) exp (--A4). ( 2 . 3 )  

The constant of integration C a is to be determined from the boundary condition on the surface 
of the thin body. 
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We next consider the inversion of the Laplace transform $ given by (2.3). Let the in- 
verse transform of C2(s) be the function fi($)- Then, returning to the variables x and y, 
we find 

(2.4) 

The boundary condition is that the gas cannot penetrate through the surface of the thin 
body (for y = 0). If y = 6Y(x) is the generatrix of the body, then v = u6Y(x) and hence in 
the first approximation in 6 

UOI ~ Y~. 

O n  t h e  o t h e r  h a n d  

In the limit y + 0 we have from (2.4) 

(2.5) 

( 2 . 6 )  

% = - + as; (x)) 

(the prime denotes a derivative of the function with respect to its argmnent). Eliminating 
v01 from (2.5) and (2.6), we obtain an ordinary differential equation for f1: 

, t YI" ( 2 . 7 )  
M o - -  

Below we will need fl"(x) in order to determine the drag force on the thin body, hence 
(2.7) will be considered as a first-order differential equation for f1'- Its solution is 

/~ (~) = exp ( -- 3_~') /[ (0) ~- ~ exp (ATI) |/_ M o --~ I 

and so 

Z;(x)-  x - - , k e x p ( - - , ~ )  /~(0) q- exp(A~]) r dq . ( 2 . 8 )  
o V -o 

To determine the form of the solution it is still necessary to specify f1'(0). We consider 
the conditions in the approach stream to the body. Along the acoustic characteristic going 
out from the nose of the body (i.e., ~ = 0) we must have the relations for a weak shock wave 
[13] 

2 
]/ZM~ - -  t @ol = - -  @ol, @ol = - -  Mo6uox, @ol = 6Po,, 6euol = O. 

In terms of the function ~ these relations are 

(2.9) 

Calculating the derivatives of ~ using (2.4), we obtain the following conditions for fl 
corresponding to (2.9); 

/ ~ ( 0 ) = 0 ,  21~(0 )+A A ( 0 ) = 0 ,  

which are consistent with (1.9) (~$(0, r = 0) and justify its use. The expression for 
fl"(x) can now be simplified. 
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The dimensionless drag force per unit length of the profile is 

L 1 

z>~--- ~o0q~ p,,q---5 -~y= (w, -  l)r;d~, 

where 7p - 1 = sYPI0 + 5~p01 = --EYM02ul0 + xM02~ = -gYM02u10 + ~M02~fl ''. 

(2.8) for fl"(x), we have 

Substituting 

1 1 [ ; ]  
i'<o(;)r~dT-i- 6~ Cr; >~ -- -- ~6 o V ~  o J " ~ --  A o o~p(A ( q - - - . ) ) r ~ <  ~. 

(2.1o) 

This equation can be used to calculate the drag on a thin plane tapered body placed in a 
steady supersonic flow of a vibrationally excited gas. In the absence of relaxation (w 0 
0) (2.10) gives 

l 

6 2 I ( r ~ ) 2 ~  ~ o -  r  (2.1t) 

which is a known result in gas dynamics [9]. 

For a finite body (Y(1) = 0) the first term in (2.10) is negative since 

1 1 I 

- -  j' Ulo (x )  Y;dx = --  Ulo (1) Y (1) q- .!' Y (x)  Ul&d~ = j' Y ( x ) u l & d ~  < O. 
0 0 0 

This term is of order E5 and for small enough ~ it exceeds the other terms in absolute val- 
ue. Then the thin body will be pulled along by the fluid (negative drag). Setting D s to 

zero, we obtain the maximum value 5max for which the body experiences negative drag at 5 < 6max: 

~ m a x  = 

1 

0 

[ ; ] i (Yzr AY~:J 'exP(A(TI- ~:))Y~drl d~ 
0 0 

(2.12) 

According to (2.12), ~max - s. Since the coefficients o and A given by (1.7) and (2.2) are 
practically independent of M 0 for M 0 > 3, and since E is proportional to i/M02 for M 0 > 3 
according to (1.5), we have 6ma x ~ I/M 0. 

We next consider the calculation of the drag force Ds using information [i0] on the 

physical properties of gases. We assume that the shape of the body is specified by the 

equation Y = 2(1 - x)x and that 5 = 0.1. The calculated results for molecular nitrogen and 
carbon monoxide are given in Tables 1 and 2, respectively, where D I is calculated from (2.]i) 
and D 2 and D B are calculated from (2.10) (])2 assuming E = 0). All values of D i are multi- 
plied by 10 -2 . It was assumed that M0 = 2. 

3. For an axisymmetric body v = 1 in (i.i0). Then 

8 - ( ~ o ~ - t ) s  

In place of ~ we introduce the new unknown function z(s, ~): 

O(s,  ~) = z(s, ~) exp (st), 

and  in  p l a c e  o f  t h e  e q u a t i o n  f o r  ~ we o b t a i n  an e q u a t i o n  f o r  z 
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TABLE 1 

T, K D~ D~ Ds 8 ~o A T h, K P, Pa 

2000 101320 
2000 101320 
3000 101320 

300 
1000 
430 

0,77 
0,77 
0,77 

0,77 
0,06t 
0,77 

0,72 
0,061 

--0,21 

0,24 
0,052 
0,35 

0,067 
t9t4,0 

2,3 

0,00001 
60,0 
0,004 

TABLE 2 

T, K O~ ~ ~o A Th, K p, Pa 

2000 101320 
2000 10132 
2000 101320 

300 
1000 
250 

D 1 D~ 

0,77 0,77 
0,77 0,079 
0,77 0,77 

0,47 
01079 

--0,11 

0,27 
0,054 
0,32 

t6,0 
4834,0 

3,3 

0,004 
i76,0 

0,0002 

i - - s  2 ( A ) 
z~;+TZ; t +  8 -  M~--I)~ z=0.  

With the help of the substitutions 

Z = 
A 

s t B - - ( M o  2 -- l ) s  s 1 / t  - A 
" - - ( M o b - - t ) ,  

it reduces to Bessel's equation of order zero 

75~ q ~-I 7~ - 7 = o .  (3.1) 

The general solution of (3.1) is expressed in terms of the modified Bessel functions I0 and 
K 0 of zero order [14] 

= C.(s)Ko~) + C~(s)4($). 

The solution of interest here must be bounded when ~ + ~, hence C4(s) = 0. Returning to the 
variable ~ and the function $, we obtain 

�9 A 

, exp (s$). a )  = C 3  ( .9  A 

V l-'-(Mo~- 1), 
Since we are interested in the drag on the thin body, we consider the behavior of the 

solution for small ~. It is known [14] that 

Ko(q) ~ - - l n  0]/2), Io(~) ~ 1, q --~ 0. ( 3 . 2 )  

Expanding the expression under the square root sign in powers of l/s, using the asymptotic 
forms (3.2), and using the series expansion for the exponential function exp(s~) = 1 + 
sr + ..., we obtain in the limits r + 0 

l n ( S ~ A  ~] 
2 

(P = - -  C .  (s) , + A 
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Next consider the inversion of the Laplace transform r The inverse transform of 

is the combination of functions [12] exp(--A~)ln-~. Let the inverse trans- 

form of C 3 be the function f2($). Then using the multiplication rule for transforms [].2] we 
can write 

r = .I'++-(,0 +~p ( -  A (~ - ~)) 1~ ~ d~. ( 3 . 3 )  
0 

The function f2 is determined from the boundary condition that the gas cannot penetrate 
through the surface of the thin body. Let the generatrix of the body be y = 5Y(x). Then 
the condition that the streamlines are tangent to the surface implies that v = udY~ and we 

again obtain (2.5). On the other hand, (2.6) is also satisfied. Eliminating v01 , we find 

%~ = - r~. ( 3 . 4 )  

The integrand of (3.3) has a singularity at ~ = ~, therefore it cannot be differentiated 
directly. This difficulty can be avoided by introducing the new variable of integration t = 

- ~. Then t e (0, 6), D = $ - t, dt = -dD. In place of (3.3) we will have 

| = J" j+_ (+ - ( -  + ,++. 
0 

Since ~ --> x when y -> 0, we obtain 

x 

(9:= /2(0)exp(--Ax):- o/ : (x-- t)exp(--At)dt  In VM~-tv 

--[/~(O)exp(--~)ln~ + ,i' ]~(x-- t)exp(-- At)lntdt 
0 

(the prim~ denotes a derivative of the function with respect to its argument). The value 
of f2(0) must be specified in correspondence with the boundary conditions. The relations 
for a wgak shock wave [13] are not satisfied in this case, since we have used the approxi- 
mation y << i in order to determine the parameter fi of the near flow field [2]. From (3.4) 
we have on the surface of the thin body (y = 6Y(x)): 

Y~=7 ]~(0) exp(--Ax)+0 1; (~ " t) exp (-- At) at], (3 .s )  

Obviously f2(0) = 0 when Y(0) = 0, Y~(0) # ~, i.e., the tip of the body located at x = 0 is 

not blunt. Therefore the assumption (1.9) that r ~) = 0 is correct and we can write 

J" 1~ O0 exp ( - A (f- - ~ ) )  d~. 
qb;~ = _ v 

0 

From (3.5) we then have 

Y+ _- oxp ( _  A ( : -  ,0) d.. 
0 

(3.6) 
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In place of the function Y = Y(x) we use the cross-sectional area S(x) = ~y2 of the 
thin body. We note that S'(0) = 2vY(0)Yi(0) = 0 since Y(0) = 0 and Y~(0) # ~. From (3.6) 

we have (for y = 5Y(x)) 

then 

6 ./; (x)  : ~-- (S '  (x)  exp ( A ~ ) ~  exp ( - -  Ax), 

) 2 . 
cD~ S ' ( x ) l n  V M ~ - t y  -~- o (S'(q)exp(A(ml--~:)))nln(x--~l)dVl " 

The drag force on a thin body of revolution is 

1 1 

, -- 6 2 ~ dS = a ~ ?-p--___.___ll dS. 
PoUo L- PoUo ?Mo z 

0 

3'P--  t = - -  e?plo -{- 67Pol - -  e27Pzo �9 
(3.7) 

For the calculations below, however, we will need to use the relation 

Indeed 

Mo ~ (6Uol ~ t (6Vot) ~ -[-6Pol----O. 

uol : - -  qb~, Vol = - -  q).;~. 

In the limit y + 0 we have 

(D-I ---- 6 In 2 S" (7) 6 S' (x) 

On the surface of the thin body of revolution y = 6Y(x) = 0(6); hence, ~ is 0(i) and #~ 

is O(61n6). Therefore for values of 5 of practical interest (6 = 0.i, for example) the 
quantity (6v0z) 2 is 0(62 ) and is of the same importance as 6u0z, which is 0(521n5). For 
the drag force on the thin body we obtain from (3.7) 

1 1 ; 6![ 2 + 

+ (i(S 'Ol)exp(A(q--x)))nln(-x--~l)d,])  ---n(Y~)2]S'(x)dx.  

Here it is convenient to introduce the transformation 

1 

f 2 dx t 2 
o s '  ( ~ )  s" ( ~ )  l~ V M~ -- , ~ r  = T In V Mo ~ - , 6 r  (~) 

1 

+ ~j~ 
�9 , .  x . I  

0 

(s '  (0) = + 

This expression simplifies considerably if S'(1) = 0, which is the case when Y(1) = 0 (the 
contour of the body is closed at the aft end of the body) or when Y~(1) = 0 (the slope of 

the contour vanishes at the aft end). We assume that the condition S'(1) = 0 is satisfied 
for the body under consideration. After a transformation of the form 
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0 

= -- j S " ( x ) !  ( s '  ( q ) exp (A( ,  1 -  x ) ) ) ~ l n ( x - - q ) d r l d x  
0 0 

the formula for the drag force on the thin body takes the form 

1 

~, = - 6: t" (~,~o ~ ~--~o + o (~)) s '  (~)  dx - 

64 "(S' 
2ao S" (x)  /~) ~ p  ( a  (~ - 7~))). 1~ (x - ~) a,1 + o (~) + 0 (6% 

(3.8) 

When 5 = o(~-E) the leading term in (3.8) is 

1 

0 

When 6 = ~ the leading term in (3.8) can be written as 

!( ) _ i/ - 

19, = - -  6 ~ euaoS'  (:c)-}- 6 2 (S '  (rl)exp (A (~1 --  x)))n In ( x - -  rt)dr I dx. 
0 

For e = o(62) the leading term in (3.8) is the second term. In the absence of relaxation 
(m0 ~ 0) (3.8) transforms to the Carman-~oore formula [3, 5] 

7)*~ = -- 2-'-a" (rl) In (x --  ~l) d q d x .  ( 3 . 9 )  

0 0 

As in the case of a plane thin body, for small enough 6 the first term in (3.8) is 
larger than the other terms in absolute value. It can be shown that 

1 1 1 

- s '  (7~) e~ = ~ ~ . ~ s '  (~)  dT~ < o. 
0 0 0 

Therefore there exists a value 6ma x such that the thin body experiences negative drag when 
6 < 6ma x and positive drag when 6 > 6ma x. The value of 6ma x is found from the condition 
Ds = 0: 

6~max : 1 x 

1 

0 

.{ a" (70 .I (a' (n) ~xp (a (n - ~))~ in (7~- n) dndT~ 
0 0 

The coefficients o and A given by (1.7) and (2.2) are approximately independent of M 0 when 
M0 > 3. According to (1.5), e is proportional to i/M02 for M 0 > 3. Therefore ~max behaves 
as i/M0. 

We next calculate Ds for a particular body of revolution using the flow parameters and 
constants characterizing the physical properties of the gas given in [i0]. As in the plane 
case we assume that the generatrix of the body is Y = 2x(l - x) and put 6 = 0.1. 
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TABLE 3 

T}, K I p, Pa T,K[ DI D, DI e ~o [ A 

2000 ] I0i320 
2000 10t320 
3000 101320 

300 t 0,41 
i000 0,4t 
430 0,4t 

0,41 
0,023 
0,41 

0,34 
0,023 

--0,78 

0,24 
0,052 
0,35 

0,067 I 0,00001 
1914,0 60,0 

2,3 0,004 

TABLE 4 

t I - 

T, K D, D2 D3 ~ tOo A T k, K P, Pa 

2000 101320 
2000 t0132 
2000 101320 

300 
i000 
250 

0,41 0,41 0,23 
0,4t 0,003 0,003 
0,4t 0,41 --0,62 

0,27 
0,054 
0,32 

16,0 " 
4834,0 

3,3 

0,004 
i76,0 

0,0002 

The calculated results for molecular nitrogen and carbon monoxide are given in Tables 
3 and 4, respectively, where D I is calculated from (3.9), D 2 and D 3 are calculated from 
(3.8) (D 2 for a = 0). The D i are multiplied by 10 -3 . It was assumed that M 0 = 2. 

The results obtained here in the linear theory show that vibrational relaxation can 
significantly change the drag force on a thin body in steady supersonic flow. In a nonex- 
cited vibrationally relaxing gas pressure perturbations produced by the thin body damp out, 
which leads to a lower (higher) pressure at the forward (aft) part of the body than in the 
case of equilibrium. In the resultant pressure field the drag force on the thin body is 
smaller. In a vibrationally excited gas relaxation of the molecular excitations leads to 
growth of the pressure downstream, which results in a buoyancy force directed toward the 
incident flow. This force can lower the drag further and even reverse it (negative drag). 

The authors thank V. A. Levin for useful discussions. 
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